Al-Nahrain University

College Of Science

 A RESEARCH SUBMITTED TO THE COLLEGE OF SCIENCE OF

 AL-NAHRAIN UNIVERSITY IN PARTIAL FULFILLMENT
 OF THE REQUIREMENTS FOR THE DEGREE OF B.Sc.

 IN COMPUTER SCIENCE

 By:

 Noor Moayed Al Gaizany

Supervised by: Dr. Jamal Mohammed

 July 2005

 CHAPTER ONE
 Introduction
1.1 Preface

 The idea of data compression is not new. There has always been an
Interest in economical communication [1].Historically, data compression was not one of the first fields of computer science. It seems that workers in the field needed the first 20 to 25 years to develop enough data before they felt the need for compression.

 Today, when the computer field is about 50 years old, data compression is a large and active field [2].

 The spread of computing has led to an explosion in the volume of data to be stored on hard disks and sent over the internet. This growth has led to a need for "data compression ", that is, the ability to reduce the amount of storage or internet bandwidth required to handle data [3].

Principles, techniques and algorithms for compressing different types of data are being developed at a fast pace by many people and are based on concepts borrowed from disciplines as varied as statistics, finite state automata, space filling curves, and Fourier and other transforms [2] from space filling view data compression can be defined as the amount of signal space that must be allocated to a given message set or data sample set [1].

 Data compression is a type of data encoding, one that is used to reduce the size of data. Other types of data encoding include encryption (cryptography) and data transmission [4]. There are many known methods for data compression. They are based on different ideas, are suitable for different types of data, and produce different results, but they are all based on the same principle, namely, they compress data by removing redundancy from the original data in the source file [2]. Compression, then, uses means of encoding
to eliminate that redundancy, thereby effectively reducing the size of the data traveling over a communications link or being stored in a repository. This leads to several applications that address the needs of today's networking practices.
 1.2 Lossless and lossy compression
 Lossless techniques are capable to recover the original representation perfectly [4].However, the lossy techniques provide higher compression ratios (ratio of uncompressed data to compressed data) by losing some information. When the compressed stream is decompressed, the result is not identical to the original data stream. Such a method makes sense especially in compressing images, moving pictures, or sounds. If the loss of data is small, we may not be able to tell the difference. In construct text files, especially files containing computer programs may become worthless if even one bit gets modified. Such files should be compressed using lossless compression method. Two points should be mentioned regarding text files: First, if a text file contains the source code of a program, many blank spaces can normally be eliminated, since they are disregarded by the compiler anyway. Second, when the output of a word processor is saved in a text file, the file may contain information about the different fonts used in the text. Such information may be discarded.
 The most common lossless compression techniques are given as fig (1.1).
1.3 Objective
 The aim of this project is to implement one of the lossless compression techniques called (LZW) which is used to compress text files.
 Compression techniques

Lossless

Fig (1.1)

Compression techniques

2.lzw
 LZW (Lempel-Ziv-Welch) is the most common algorithm used in computer graphics.This lossless method of data compression is found in several image file formats, such as GIF and TIFF, and is also part of the V.42bit modem compression standard and PostScript Level 2.

In 1977,Abraham Lempel and Jacob Ziv created the first of what we now call the LZ family of substitutional compressors.The LZ77 compression algorithms are commonly found in text compression and archiving programs, such as compress, zoo, 1ha, pkzip, and arj. The LZ78 compression algorithms are more commonly used to compress binary data, such as bitmaps.

In 1984, while working for Unisys, Terry Welch modified the LZ78 compressor for implementation in high-performance disk controllers. The result was the LZW algorithm that is commonly found today.
LZW manipulates three objects in both compression and decompression: the charstream, the codestream, and the string table. In compression, the charstream is the input and the codestream is the output. In decompression, the codestream is the input and the charstream is the output. The string table is a product of both compression and decompression, but is never passed from one

to the other [3].
2.1 lzw compression
 LZW uses a dictionary with 4096 entries. In the beginning the entries 0-255 refers to individual bytes, and the rest 256-4095 refer to longer strings. Each time a new code is generated it means a new string has been selected from the input stream and new strings are added to the dictionary are created.

 It become very widely used after it became part of the GIF (Graphics Interchange Format) image format in 1987 which is still in widespread use, compressed better than JPEG for images like cartoons or drawings with computer that have a lot of repetitions, for example, the repeated background [5]. LZW compression provided a better compression ratio, in most applications, than any well known method available up to that time. It became the first widely used general purpose data compression method in computers.

On large English texts, it typically compressed in many cases [6].

 For simplicity consider text files are considered but the concept is the same for other types of files, then the LZW is as in algorithm (1.1) [3].

Algorithm (1.1) of lzw coding

1. Initialize string table;

 2. [.c.] <- empty;

3. K <- next character in charstream;

4. Is [.c.]K in string table?
· Yes:

· [.c.] <- [.c.]K;

· Go to [3];

· No:
· Add [.c.]K to the string table;
· Output the code for [.c.] to the codestream;
· [.c.] <- K;
· Go to [3];
2.2 lzw decompression
 LZW decompression takes the stream of codes and uses it to exactly recreate the original input data. Just like the compression algorithm, the decompressor adds a new string to the dictionary each time it reads in a new code. All it needs to do in addition is to translate each incoming code into a sting and send it to the output such as example (1.1) is as in table (1.2) that is solved by depending algorithm (1.2) of lzw decoding.
Algorithm (1.2) of lzw decoding
1. Initialize string table;

2. Get first code: <code>;
3. Out out the string for <code> to the charstream;
4. <old>=<code>;
5. <code> <- next code in codestream;
6. Dose <code> exit in the string table?
· Yes:
· Output the string for <code> to the charstream;
· […] <- translation for <old>;
· Add […]K to the string table;
· <old> <- <code>;
· No:
· […] <- translation for <old>;

· K <- first character of […];

· Output […]K to charstream and add it to string table;

· <old> <- <code>;

7. Go to [5];

NOTE:
 [.c.] Refers to a prefix that we'll store things in and compare things to now and then.

[.c.]K refers to current string, where k is some character.

[…] refers to an arbitrary prefix.

Example (1.1):

 Input string: "/wed/we/wee/web"

 Table (1.1) LZW compression of example (1.1).

	input
	 in

Dictionary?
	New

entry

	output
	
	input
	 in

Dictionary?

	New

Entry
	output

	 /
	 Yes
	 _
	 _
	
	 e/
	 No
	261-e/
	 (e)

	 /w
	 No
	256-/w
	 (/)
	
	 /
	 Yes
	 _
	 _

	 W
	 Yes
	 _
	 _
	
	 /w
	 Yes
	 _
	 _

	 we
	 No
	257-we
	 (w)
	
	 /we
	 Yes
	 _
	 _

	 E
	 Yes
	 _
	 _
	
	 /wee
	 No
	262-/wee
	260 (/we)

	 ed
	 No
	258-ed
	 (e)
	
	 e
	 Yes
	 _
	 _

	 D
	 Yes
	 _
	 _
	
	 e/
	 Yes
	 _
	 _

	 d/
	 No
	259-d/
	 (d)
	
	 e/w
	 No
	263-e/w
	261 (e/)

	 /
	 Yes
	 _
	 _
	
	 w
	 Yes
	 _
	 _

	 /w
	 Yes
	 _
	 _
	
	 we
	 Yes
	 _
	 _

	 /we
	 No
	260-/we
	256 (/w)
	
	 web
	 No
	264-web
	257 (we)

	 E
	 Yes
	 _
	 _
	
	<beof>
	 No
	 _
	 (b)

Example (1.1)

 Input code: "/wed<256>e<260><161><257>b"

 Table (1.2) LZW decompression of example (1.1).

	Input
	 in

Dictionary?
	new

entry

	Output

	 /
	 _
	 _
	 /

	 w
	 Yes
	256-/w
	 w

	 e
	 Yes
	257-we
	 e

	 d
	 Yes
	258-ed
	 d

	 256
	 Yes
	259-d/
	 /w

	 e
	 Yes
	260-/we
	 e

	 260
	 Yes
	261-e/
	 /we

	 261
	 Yes
	262-/wee
	 e/

	 257
	 Yes
	263-e/w
	 we

	 b
	 Yes
	264-web
	 b

The most remarkable feature of this type of compression is that the entire dictionary has been transmitted to the decoder without actually explicity transmitting the dictionary. The decoder builds the dictionary as part of the decoding process.
 Conclusion
* The algorithm is of linear complexity and is simple in implementation and its complexity depends on source message length which affects the main loop (i.e. O (n) complexity, where n is the number of symbols in the input stream). Still this algorithm can be considered as fast and simple and the large dictionary data structure can be searched directly.

 * The algorithm gives good result when the same phrase is repeated frequently; otherwise it may lead to an expansion. And the longer the phrase is, the higher compression ratio gained.
 * If an error happens to any symbol it will causes damage to the remaining of the message because the dictionary indexes of all the following phrases will be all affected.
References:
1. Lynch T.J., Data Compression techniques And Applications, 1Ed, Van Nostrand Reinhold Company Inc, USA, 1985.

2. Salomon D., Data Compression the Complete Reference, 2Ed, springer Verlag, New York, 2000.
3. httpwww.Softpanoama.org Algorithms compression.Shtm1#lzw
 4. Petrovic M., Hypermedia Technologies, (Tech rep.), electrical Engineering dep., University of Technology, Sydney, 1998.

5. Arturo San Emeterio Compos, lzw, gif decoding, Barcelona, 1999, http://www.arturocampos.com/as_lzw_gif.html.
6. Wikipedia, the free encyclopedia, Data Compression/LZW, 2002, http://www.wikipedia.org/wiki/Data_Compression/lzw.
Huffman

Frequency

Oriented

 Arithmetic

 Coding

 Run

 Length

Prediction

 Based

Importance

 Based

 Lempel-

 Ziv-

 Welch

 Lossy

PAGE
1

